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Abstract
New geometric structures that relate the Lagrangian and Hamiltonian
formalisms defined upon a singular Lagrangian are presented. Several vector
fields are constructed in velocity space that give new and precise answers to
several topics such as the projectability of a vector field to a Hamiltonian vector
field, the computation of the kernel of the presymplectic form of a Lagrangian
formalism, the construction of the Lagrangian dynamical vector fields and the
characterization of dynamical symmetries.
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AMS classification scheme numbers: 70G45, 70H45

1. Introduction

The dynamics associated with a first-order time-independent variational principle on a
configuration manifold Q can be formulated either in its tangent bundle TQ (Lagrangian
formalism) or in its cotangent bundle T∗Q (Hamiltonian formalism). If the variational
problem is defined by the Lagrangian function L, both formulations are related through
the Legendre transformation, which is given by the fibre derivative of L, FL: TQ →
T∗Q.

In the regular case, that is, when FL is a local diffeomorphism (or when the fibre
Hessian is everywhere non-singular), the equivalence between both formulations is fairly
simple. However, in the singular case, this correspondence between the Lagrangian and the
Hamiltonian formalisms is far from trivial, and it is just this case which is the most relevant for
the fundamental physical theories (as generally covariant theories, Yang–Mills theories and
string theory), because the occurrence of gauge freedom is only possible within this framework.
This explains the effort made since 1950 to define the Lagrangian and Hamiltonian formalisms
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in the singular case, to study the relations between them, their dynamics and symmetries, their
quantization, and so on. In contrast to the regular case, some specific features of the singular
case include constraints, arbitrary functions, gauge invariance, gauge fixing, etc.

This development has benefited from the introduction of differential-geometric methods
in the study of dynamical systems—some books along this line are for instance [AM 78,
Arn 89, God 69, JS 98]. A great variety of tools from differential geometry (manifolds and
bundles, differential forms, metrics, connections, etc) have been widely applied since the
1970s to singular Lagrangians, achieving a fair comprehension about the Lagrangian and the
Hamiltonian formalisms and their relations.

The need of fine tools in the singular case is a direct consequence of the Legendre
transformation FL: TQ → T∗Q being singular. For instance, if FL is a diffeomorphism,
a Hamiltonian vector field Z in T∗Q (with respect to the canonical symplectic form ωQ)
is directly converted into a Hamiltonian vector field Y = FL∗(Z) in TQ (with respect to
the symplectic form ωL = FL∗(ωQ), which indeed can be used to describe the Lagrangian
dynamics). In the singular case, each part of this statement (which of course is not true) has
to be scrutinized carefully.

The purpose of this paper is to introduce some as yet unveiled geometric structures
that appear in these formalisms and that facilitate the connection between the Lagrangian
and the Hamiltonian formulations in the singular case. Once the Lagrangian function is
fixed, a vector field Yh in TQ will be defined from an arbitrary function h in T∗Q; this
is our main object. From it, once a Hamiltonian and a basis for the primary Hamiltonian
constraints are chosen, another vector field 	h will be defined; should the Lagrangian be
regular, the vector field 	h would be the Hamiltonian vector field of FL∗(h) with respect to
ωL. These constructions, and other ones related to them, provide new connections between
the dynamics in both pictures. Applications include the study of the projectability of a
vector field in the Lagrangian formalism to a Hamiltonian vector field, the construction
of the Lagrangian dynamical vector fields, the study of the relation between the arbitrary
functions of the Lagrangian and Hamiltonian dynamics, and the formulation of the dynamical
symmetries (with special emphasis on the Noether symmetries); even the intrinsic construction
of some structures as the kernel of the presymplectic form in tangent space will become almost
trivial.

As for the geometric tools used in the paper, they are related to the fibred structure of
the tangent and cotangent bundles. We use basically the fibre derivative (that is, the ordinary
differentiation with respect to the fibre variables), the vertical lift (that is, the identification
between points and tangent vectors in a vector space) and the canonical structures of the
tangent bundle (vertical endomorphism, canonical involution) and of the cotangent bundle
(the canonical differential forms).

The paper is organized as follows. Sections 2 and 3 provide some differential-geometric
preliminaries concerning bundles and the fibre derivative. Section 4 contains a geometric
description of Lagrangian and Hamiltonian formalisms in the singular case. The construction
of the vector field Yh is presented in section 5, together with some of its properties. Two
other vector fields, Rh and 	h, are also presented there. Section 6 uses the mentioned
constructions to study the projectability to Hamiltonian vector fields of T∗Q, and to give
an explicit basis for the kernel of the presymplectic form ωL of the Lagrangian formalism. In
section 7 the preceding vector fields are used to construct the Lagrangian dynamics and to relate
the arbitrary functions of Lagrangian and Hamiltonian dynamics; the dynamical symmetries of
the Hamiltonian formalism are also studied in a simple way. The case of regular Lagrangians
is studied in section 8. Section 9 contains a simple example. The final section is devoted to
conclusions.
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2. Some facts about bundles

Basic techniques concerning fibre bundles and vector bundles will be needed; in particular,
the vertical vectors of a bundle and the tangent bundle of a bundle, as well as some canonical
structures related to the tangent bundle. They may be found in many books, such as for instance
[AM 78, AMR 88, Die 70, God 69, KMS 93, Sau 89]. In this section we recall a few of these
concepts and introduce some notation.

Vertical vectors. Let π :E → B be a fibre bundle, with fibres Ex = π−1(x). The vertical
bundle of E is the vector subbundle V(E) = Ker T(π) ⊂ T(E). Its fibre at a point ex ∈ Ex is
the tangent space to the fibre of E at x: Vex (E) = Tex (Ex).

Let us consider a vector bundle E → B. At each x ∈ B we have a vector space Ex . The

tangent space of Ex at a point ex is naturally isomorphic to Ex itself, Ex
∼=→ Tex (Ex); this

isomorphism is constructed by sending vx to the tangent vector of the path t �→ ex + tvx in
Ex . Therefore, T(Ex)

∼= Ex × Ex .
Globally this yields a canonical isomorphism V(E) ∼= E ×B E, called the vertical lift

E ×B E
vlE−→ V(E) ⊂ T(E)

(ex, vx) �→ vlE(ex, vx) = [t �→ ex + tvx].
(2.1)

Here E×B E denotes the fibre product (its elements are the couples (e, e′) ∈ E×E such that
π(e) = π(e′)), considered as a vector bundle over the first factor.

The vertical lift defines a natural bijection between fibre bundle mapsE → E and vertical
vector fields on E: if ξ :E → E is a fibre bundle map, then the map

ξ v:E −→ V(E) ⊂ T(E) ξ v(e) = vlE(e, ξ(e)) (2.2)

is a vertical vector field. This procedure applied to the identity map of E yields a canonical
vertical vector field, the Liouville vector field, 	E(e) = vlE(e, e). If (x, a) are vector bundle
coordinates of E—usually we will omit indices—then the local expression of 	E is ai∂/∂ai .

Some structures of T(TB). Given a vector bundle π :E → B, the tangent bundle TE has two
vector bundle structures: τE : TE → E and Tπ : TE → TB. In the case ofE = TB, we obtain
two different vector bundle structures over the same base. Both structures are canonically
isomorphic through the canonical involution, κB : T(TB) → T(TB). Its local expression in
natural coordinates is

κ(x, v; u, a) = (x, u; v, a).
Another map in this manifold is the vertical endomorphism J: T(TB) → T(TB), whose

local expression is

J(x, v; u, a) = (x, v; 0, u).

Projectability. Let F :M → N be a map between manifolds. A function f :M → R is said
to be projectable (through F) if f = F∗g := g ◦ F for a certain function g:N → R. A vector
field X on M is projectable if there exists a vector field Y on N such that T(F) ◦ X = Y ◦ F ;
one also says that X and Y are F-related. Alternatively, one hasX ·F∗(g) = F∗(Y · g) for any
function g on N .

When F has constant rank, one can use the rank theorem to obtain a characterization of
the local projectability of a function f : this condition is that v ·f = 0 for every v ∈ Ker T(F).
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There are similar results for the local projectability of vector fields. However, let us just point
out one result from the opposite side: a vector field Y onN is locally the projection of a vector
field X iff Y is tangent to the image of F .

3. Fibre derivatives

The fibre derivative will play an important role in our developments. Its definition can be
found in many places (such as, for instance, [GS 73, AM 78]), since it is a relevant structure
when constructing the Legendre transformation that connects Lagrangian and Hamiltonian
formalisms. In a recent article [Grà 00] the fibre derivative has been studied in detail, with a
view to application in singular Lagrangian dynamics. In this section we summarize some of
the results of that paper.

Definition of the fibre derivative. Our framework consists of two real vector bundlesE → M

and F → M over the same base, and a fibre M-bundle morphism f :E → F , that is, a fibre-
preserving map: for each ex ∈ Ex , f (ex) ∈ Fx . (In [Grà 00] the more general case ofE and F
being affine bundles is considered; this is especially interesting, for instance, when considering
higher-order or time-dependent Lagrangians, or field theory.)

The restriction of f to a fibre defines a map fx :Ex → Fx between vector spaces, whose
ordinary derivative at a point ex ∈ Ex is a linear map Dfx(ex):Ex → Fx . In other words, we
have defined an element

Ff (ex) := Dfx(ex) ∈ Hom(Ex, Fx) (3.1)

for each ex ∈ E. Globally, this defines a fibre-preserving map

Ff :E −→ Hom(E, F ) ∼= F ⊗ E∗ (3.2)

which is the fibre derivative of f .
If the local expression of f is (xµ, ai) �→ (xµ, f k(x, a)), then the local expression of Ff

is

Ff (xµ, ai) =
(
xµ,

∂f k

∂ai
(x, a)

)
. (3.3)

Since Ff is also a fibre bundle map between vector bundles, the same procedure can be
applied to compute its fibre derivative. The canonical isomorphism Hom(E,Hom(E, F )) ∼=
L2(E;F) now yields the second fibre derivative, the fibre Hessian, which is the
map

F2f :E −→ L2(E;F) ∼= Hom(E ⊗ E,F) ∼= F ⊗ E∗ ⊗ E∗ (3.4)

whose local expression is

F2f (xµ, ai) =
(
xµ,

∂2f k

∂ai ∂aj
(x, a)

)
. (3.5)

This can be readily generalized to higher-order fibre derivatives.



Singular Lagrangians: some geometric structures along the Legendre map 3051

The case of a real function. Let us note the particular case where F = M × R. This
corresponds indeed to considering a real function f :E → R on a vector bundle π :E → M .
Then its fibre derivative is a map

Ff :E −→ Hom(E,M × R) =: E∗ (3.6)

of which we shall study some properties.
First, there is a close relation between the tangent map

T(Ff ): TE −→ TE∗

and the fibre Hessian F2f of f ,

F2f = F(Ff ):E −→ Hom(E,E∗) ∼= E∗ ⊗ E∗.

Indeed, the restriction of Tex (Ff ) to vertical vectors is—thanks to the vertical lift—essentially
the same map as the Hessian considered as a map F2f (ex):Ex → E∗

x . Consequently, one has
that

vx ∈ Ker F2f (ex) ⇐⇒ vlE(ex, vx) ∈ Ker Tex (Ff )
and since Ker T(Ff ) ⊂ V(E), in this way we obtain the whole subbundle Ker T(Ff ). Note,
in particular, that Ff is a local diffeomorphism at ex ∈ E iff F2f (ex) is a linear isomorphism.

These results can also be deduced from the local expressions of the maps; using as natural
coordinates of E and E∗(x, a) and (x, α), respectively, they are:

Ff : (x, a) �→
(
x,
∂f

∂a
(x, a)

)
T(Ff ): (x, a; v, h) �→

(
x,
∂f

∂a
(x, a); v, ∂

2f

∂a ∂x
v +

∂2f

∂a ∂a
h

)
F2f : (x, a) �→

(
x,

∂2f

∂a ∂a
(x, a)

)
.

Finally, we want to note the following result. If ξ :E → E is a bundle map with associated
vertical field X = ξ v on E, and g:E → R is a function, then

X · g = 〈Fg, ξ〉. (3.7)

This can be applied, in particular, to the Liouville vector field, giving

(	E · g)(ex) = 〈Fg(ex), ex〉; (3.8)

the fibre derivative of this expression can be computed by applying the Leibniz rule, and is

F(	E · g)(ex) = Fg(ex) + F2g(ex) · ex. (3.9)

Some useful structures: &h and ϒg . Considering the fibre derivative Ff :E → E∗ of f as
fixed data, we are going to derive several properties of a function h:E∗ → R and its fibre
derivatives.

We use the notation

γh = Fh ◦ Ff :E → E (3.10)

for the composition E
Ff−→ E∗ Fh−→ E∗∗ ∼= E. Recall that this map, through the vertical lift,

defines a vertical vector field γ v
h on E:

&h := γ v
h = vlE ◦ (IdE,Fh ◦ Ff ):E → E ×M E → VE ⊂ TE. (3.11)
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Their local expressions are

γh: (x, a) �→
(
x,
∂h

∂α
(Ff (x, a))

)
&h = (Ff )∗

(
∂h

∂αi

)
∂

∂ai
.

We can apply the chain rule to compute expressions like

F(h ◦ Ff ) = F2f • γh (3.12)

F(γh) = (F2h ◦ Ff ) • F2f. (3.13)

Here we have, for instance, F2h ◦ Ff :E → E∗ → Hom(E∗, E∗∗) ∼= Hom(E∗, E) and
F2f :E → Hom(E,E∗); the symbol • denotes the composition between the images of both
maps—it is like the contraction of vector fields with differential forms.

Note from (3.12) that if h vanishes on the image Ff (E) ⊂ E∗ then γh is in the kernel
of F2f . So we obtain the following result (see also [Grà 00, BGPR 86]): suppose that Ff
has constant rank; thus, locally the image of Ff is a submanifold of E∗ that can be (locally)
described by the vanishing of a set of independent functions φµ:E∗ → R. Then the vectors
γφµ(ex) are a basis for Ker F2f (ex), and the vertical vector fields &φµ constitute a frame for
Ker T(Ff ).

As a byproduct, a function on E is (locally) projectable through Ff to E∗ iff its Lie
derivative with respect to the vector fields &φµ is zero.

Now we present a construction dual to &h. Given a function g:E → R, we can use its
fibre derivative Fg:E → E∗ to construct a map

ϒg = vlE∗ ◦ (Ff,Fg):E → E∗ ×M E
∗ → VE∗ ⊂ TE∗ (3.14)

this is a vector field along the map Ff , with the local expression

ϒg = ∂g

∂ai

(
∂

∂αi
◦ Ff

)
.

Recall that a section of a bundle π :E → B along a map f :B ′ → B is a map σ :B ′ → E

such that π ◦ σ = f . In particular, a section Z:B ′ → TB of TB along f is called a vector
field along f ; such a map derivates a function h:B → R giving a function Z · h on B ′:
(Z · h)(y) = Z(y) · h.

Note finally that, as differential operators, &h and ϒg are related by

ϒg · h = &h · g. (3.15)

This follows from the fact that &h · g = 〈Fg, γh〉 = 〈Fg,Fh ◦ Ff 〉 = ϒg · h.

4. Some structures of Lagrangian and Hamiltonian formalisms

The basic concepts about singular Lagrangian and Hamiltonian formalisms—Legendre map,
energy, Hamiltonian function, Hamiltonian constraints, etc—are well known and can be found
in several papers, such as for instance [BGPR 86, BK 86, Car 90, GNH 78, MMS 83, MT 78].
Now we will recall some of these concepts, also introducing some recent results from [Grà 00].
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Connection between the Lagrangian and the Hamiltonian spaces. Let us consider a first-
order autonomous Lagrangian on a configuration space Q, that is to say, a map L: TQ → R.
Its fibre derivative (Legendre transformation) and fibre Hessian are maps

FL: TQ −→ T∗Q

F2L = F(FL): TQ −→ Hom(TQ,T∗Q) = T∗Q⊗ T∗Q.

The local expression of FL is FL(q, q̇) = (q, p̂), where

p̂ = ∂L

∂q̇

are the momenta. If the Legendre map is a local diffeomorphism—equivalently the Hessian is
everywhere non-singular—the LagrangianL is called regular, otherwise it is called singular—
this is our focus of interest.

We assume that the Legendre transformation ofL has connected fibres and is a submersion
onto a closed submanifold Po ⊂ T∗Q, the primary Hamiltonian constraint submanifold—
that is to say, L is an almost regular Lagrangian in the terminology of [GN 79]. This is
the most basic technical requirement to develop a Hamiltonian formulation from a singular
Lagrangian L, though from a local viewpoint it suffices to have FL of constant rank. Locally
Po can be described by the vanishing of an independent set of functions φµ, called the primary
Hamiltonian constraints. According to the preceding section, the vectors γµ = γφµ constitute a
basis for the kernel of F2L, and the vertical fields &µ = &φµ constitute a frame for Ker T(FL).

The energy of L is defined by

EL = 	TQ · L− L.
Due to the properties of the Liouville vector field (3.8), (3.9),

EL(uq) = 〈FL(uq), uq〉 − L(uq) (4.1)

FEL(uq) = F2L(uq) · uq. (4.2)

This shows at once that &µ · EL = 〈FEL, γµ〉 = 0, that is to say, the energy is projectable
(through FL) to a function H : T∗Q → R called a Hamiltonian,

EL = H ◦ FL
which is unique on the primary Hamiltonian constraint submanifold.

A resolution of the identity. Given an almost regular Lagrangian L, the choice of a
Hamiltonian and set of primary Hamiltonian constraints yields a (local) resolution of the
identity map of TQ as follows.

There exist functions vµ (defined on an open set of TQ) such that, locally,

IdTQ = γH +
∑
µ

γµ v
µ. (4.3)

Moreover,

IdHom(TQ,TQ) = M • F2L +
∑
µ

γµ ⊗ Fvµ (4.4)

where

M = (F2H ◦ FL) +
∑
µ

(F2φµ ◦ FL) vµ. (4.5)
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(Note that F2L is a map TQ → Hom(TQ,T∗Q) andM is a map TQ → Hom(T∗Q,TQ) =
TQ⊗ TQ.)

Since the functions vµ and their properties will be instrumental throughout the paper, we
will recall the proof of this result [Grà 00]. Application of the chain rule (3.12) to the definition
of H yields FEL(uq) = F2L(uq) · γH (uq), and so using (4.2) we obtain

F2L(uq) · (uq − γH (uq)) = 0.

The terms in parentheses are in Ker F2L(uq), thus there exist numbers vµ(uq) such that
uq − γH (uq) = ∑

µ γµ(uq) v
µ(uq), which is equation (4.3). Finally, using (3.13) and the

Leibniz rule, one can compute the fibre derivative of (4.3); the result is equation (4.4).
The above results can be given a slightly different form, using the identification of bundle

maps TQ → TQ with vertical vector fields on TQ. For instance, equation (4.3) can be
rewritten as

	TQ = &H +
∑
µ

vµ &µ. (4.6)

Note that application of (4.4) to γν yields γν = ∑
µ γµ〈Fvµ, γν〉. So we have

&ν · vµ = 〈Fvµ, γν〉 = δµν (4.7)

where we have applied equation (3.7). This shows that the functions vµ are not projectable;
in a certain sense, they correspond to the velocities that cannot be retrieved from the momenta
through the Legendre map.

Let us finally note that the local expressions of equations (4.4) and (4.5) were initially
deduced in [BGPR 86] by derivating the local expression of (4.3), which is

q̇ i = FL∗
(
∂H

∂pi

)
+
∑
µ

FL∗
(
∂φµ

∂pi

)
vµ.

The Euler–Lagrange equation. So far we have not considered the equations of motion. We
will deal with them in several forms.

Let ωQ be the canonical 2-form of T∗Q (in coordinates dqi ∧ dpi). One defines the
presymplectic form in TQ

ωL = FL∗(ωQ).

It is a symplectic form iff the Lagrangian is regular. Then a path γ : I → Q is a solution of the
Euler–Lagrange equation iff

iγ̈ ωL = dEL ◦ γ̇ . (4.8)

A second representation of the equation of motion is

EL ◦ γ̈ = 0 (4.9)

where EL: T2Q → T∗Q is the Euler–Lagrange form of L (see for instance [CLM 91, Tul 75]);
T2Q denotes the second-order tangent bundle of Q. EL is a 1-form along the projection
T2Q → Q, with local expression

EL = [L]i dqi [L]i = ∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
. (4.10)

A third version of the Euler–Lagrange equation can be written using the time-evolution
operator K that connects Lagrangian and Hamiltonian formalisms. This operator was
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expressed in [GP 89] as a vector field along FL satisfying certain properties that determine it
completely. The local expression of K is

K(q, q̇) =
(
q, p̂; q̇, ∂L

∂q

)
.

In coordinates, K was first introduced [BGPR 86] as a differential operator (see also
[CL 87, Car 90]). Then its local expression reads

K · h = FL∗
(
∂h

∂q

)
q̇ + FL∗

(
∂h

∂p

)
∂L

∂q
. (4.11)

(In a time-dependent framework it would hold an additional piece, FL∗(∂h/∂t).) The
operator K is a useful tool in the theory of singular Lagrangians: it can be used (see below)
to express the equations of motion [GP 89], to relate the Lagrangian and the Hamiltonian
constraints [BGPR 86, CL 87, Pon 88], to study the symmetries of the equations of motion
[GP 88, BGGP 89, FP 90, GP 92b, GP 94, GP 00] and, more recently, to study Lagrangian
systems with generic singularities [PV 00]. See also [GPR 91, GP 95].

Using this operator, a path ξ : I → TQ is the lift γ̇ of a solution of the Euler–Lagrange
equation iff

T(FL) ◦ ξ̇ = K ◦ ξ. (4.12)

The following diagram shows all the objects involved:

I TQ T∗Q.

T(TQ) T(T∗Q)

✲
ξ

✲
FL

�
�

�
��✒

ξ̇

�
�

�
��✒

K

✲T(FL)

❄ ❄

The Hamilton–Dirac equation. In the singular case, Hamiltonian dynamics was first studied
by Dirac and Bergmann [Dir 50, AB 51, Dir 64]. A path η: I → Po is a solution of the
Hamilton–Dirac equation if there exist functions λµ such that

η̇ = ZH ◦ η +
∑
µ

λµ Zµ ◦ η. (4.13)

Here we denote by Zh the Hamiltonian vector field defined by h: it satisfies

iZhωQ = dh

and, as a differential operator, it is related to the Poisson bracket by

Zh = {−, h}.
We have also put Zµ = Zφµ .

Another geometric version of Dirac’s theory can be obtained by considering j :Po ↪→ T∗Q
and the presymplectic form ωo = j ∗(ωQ). Then the Hamilton–Dirac equation for a path
η: I → Po is

iη̇ωo = dHo ◦ η (4.14)
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where Ho is the Hamiltonian on Po [GNH 78, BK 86].
Using the operator K , the Hamilton–Dirac equation can also be written as

η̇ = K ◦ T(τ ∗
Q) ◦ η̇ (4.15)

for a path η in T∗Q [GP 89]—see also [BGPR 86, Tul 76].
Of course, the Hamiltonian dynamics is defined so as to be equivalent to the Lagrangian

dynamics, in the sense that if ξ : I → TQ is a solution of the Euler–Lagrange equation then
η: I → T∗Q defined as η = FL ◦ ξ satisfies the Hamilton–Dirac equation, and conversely
taking η and defining ξ = (τ ∗

Q ◦ η). from it. We will say that such ξ , η are a couple of related
solutions.

Some further relations involving the operator K . Since the same dynamics is written in
different ways, there are relations between the different structures involved. Let us point out
first

K · h = d

dt
FL∗(h) + 〈EL, γh〉. (4.16)

Here there is an abuse of notation that requires some explanation. On the right-hand
side we have a function FL∗(h) on TQ, whose total time derivative (see, for instance,
[Sau 89, CLM 91]) is a function on T2Q, and the contraction of EL with γh, considered as a
function on T2Q; however, the sum of both functions turns out to not depend on the acceleration,
so it is a function on TQ, just as for the left-hand side.

The local expression of (4.16) first appeared in [GP 92b].
Though for singular Lagrangians the Lagrangian and the Hamiltonian dynamics are

not, in general, completely determined, equation (4.16) shows that, when considering
solutions of Euler–Lagrange and Hamilton–Dirac equations, the evolution operator K gives
an unambiguous time derivative of a function in Hamiltonian space expressed in Lagrangian
terms. In particular, taking h = φµ, we obtain the primary Lagrangian constraints

χµ := K · φµ = 〈EL, γµ〉: TQ → R (4.17)

note that they also arise directly from (4.9) as a consistency condition—this is due to the fact
that γµ are in the kernel of F2L. The vanishing of the primary Lagrangian constraints defines
the primary Lagrangian subset V1 ⊂ TQ, which we will assume to be a submanifold. Note
that the functions χµ are not necessarily independent, and indeed may vanish identically.

Now we can relate the operatorK with the Hamiltonian evolution. A very important result
for our purposes is that

K · h = FL∗{h,H } +
∑
µ

FL∗{h, φµ} vµ (4.18)

where the functions of equation (4.3) appear again. The proof can be found in [BGPR 86],
and in [GPR 91] for higher-order Lagrangians. This result can also be expressed as an equality
between maps (in this case, vector fields along FL) rather than as an equality of differential
operators:

K = ZH ◦ FL +
∑
µ

vµ (Zµ ◦ FL). (4.19)

An immediate consequence of (4.18) is

&µ · (K · h) = FL∗{h, φµ}. (4.20)
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This provides us with a test of projectability: the function K · h is projectable iff h is a first-
class function (with respect to Po). Recall that a function h: T∗Q → R is said to be first class
with respect to a submanifold P ⊂ T∗Q if the Hamiltonian vector field Zh is tangent to P ,
which means that {h, φ} ≈

P
0 for any constraint φ defining the submanifold. (The notation

f ≈
M

0 means that f (x) = 0 for all x ∈ M (Dirac’s weak equality); for instance φµ ≈
Po

0 and

χµ ≈
V1

0.)

5. Some canonical vector fields

The vector field Yh. Let h: T∗Q → R be a function in phase space. Its fibre derivative is a
map Fh: T∗Q → TQ, so we can define another map

Yh := κ ◦ T(Fh) ◦K (5.1)

where K is the time-evolution operator of L and κ: T(TQ) → T(TQ) is the canonical
involution of T(TQ). Let us show all this in a diagram:

TQ ✲
FL

�
�

�
��✒

K

T∗Q

T(T∗Q)

❄
✲

Fh

✲T(Fh)

TQ.

T(TQ) ✲κ

❄

T(TQ)

Using the local expressions of all the objects involved, one obtains the local expression of Yh:

Yh(q, q̇) =
(
q, q̇; ∂h

∂p
(FL(q, q̇)), q̇ ∂

2h

∂q ∂p
(FL(q, q̇)) +

∂L

∂q

∂2h

∂p ∂p
(FL(q, q̇))

)
. (5.2)

Proposition 1. The map Yh is a vector field on TQ, with local expression

Yh = FL∗{q, h} ∂

∂q
+K · {q, h} ∂

∂q̇
. (5.3)

It has the following properties:

J ◦ Yh = &h (5.4)

Yg · (FL∗h) = FL∗{h, g} + &h · (K · g) (5.5)

Yg · (K · h) = K · {h, g} + Yh · (K · g) (5.6)

T(FL) ◦ Yg = Zg ◦ FL + ϒK·g. (5.7)

Proof. The fact that Yh is a vector field is a direct consequence of its local expression (5.2). It
also follows from

τTQ ◦ Yh = τTQ ◦ κ ◦ T(Fh) ◦K = T(τQ) ◦ T(Fh) ◦K = T(τ ∗
Q) ◦K = IdTQ .

The alternative (and more suggestive) local expression (5.3) of Yh is also clear from (5.2),
as well as the fact that J ◦ Yh = &h, where J is the vertical endomorphism of T(TQ).
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The following two equations can be proved from their local expressions. This is simpler
for the first one, (5.5): its left- and right-hand sides read in coordinates(

∂̂h

∂q
+
∂̂h

∂p

∂2L

∂q̇ ∂q

)̂
∂g

∂p
+
∂̂h

∂p

∂2L

∂q̇ ∂q̇

(
∂̂2g

∂p ∂q
q̇ +

∂̂2g

∂p ∂p

∂L

∂q

)

(we have put ĥ = FL∗h to simplify the notation).
Regarding the second equation, (5.6), one has to prove Yg ·(K ·h)−Yh ·(K ·g) = K ·{h, g}.

The terms remaining after the antisymmetrization of Yg(K · h) with respect to (g, h) can be
arranged to read(

q̇ FL∗ ∂

∂q
+
∂L

∂q
FL∗ ∂

∂p

)(
∂h

∂q

∂g

∂p
− ∂h

∂p

∂g

∂q

)
which is K · {h, g}.

Finally, equation (5.7) is obtained by using relation (3.15) to express equation (5.5) as an
equality between vector fields along FL. �

The vector fields Rh and 	h. Equation (5.7) shows explicitly an obstruction for the
projectability of Yg to the Hamiltonian vector field Zg . In the discussion of this issue it
will be interesting to consider the vertical vector field

Rh = &{h,H } + vµ&{h,φµ} (5.8)

defined from any function h on phase space—from now on we use the summation convention
for the Greek indices associated with the primary constraints. Note that Rh depends on the
choice of the Hamiltonian H and the primary Hamiltonian constraints φµ. The action of Rh
on projectable functions is

Rg · FL∗h = &h · (K · g)− FL∗{g, φµ}&h · vµ (5.9)

which is a kind of generalization of (4.20). To prove it, first we apply Rg to FL∗h, then we
use the symmetry property

&h · FL∗(g) = F2L(γg, γh) = &g · FL∗(h) (5.10)

and finally we apply equation (4.18) to let K appear explicitly.
The interest of the vector field Rh comes from the fact that it appears when taking

equation (5.6) and rewriting it using relations (4.18) and (5.5); after some cancellations one
arrives at

Rh · (K · g) + FL∗{h, φµ}Yg · vµ = Rg · (K · h) + FL∗{g, φµ}Yh · vµ. (5.11)

In other words, the left-hand side is symmetric in (g, h). We can develop this further, applying
equation (4.18) again to makeK disappear from (5.11). A convenient organization of the terms,
together with some additional cancellations due to the symmetry property (5.10), finally yields
another symmetric equation:

FL∗{h, φµ} (Yg − Rg) · vµ = FL∗{g, φµ} (Yh − Rh) · vµ. (5.12)

This suggests to define, for any function g in phase space, the vector field

	g = Yg − Rg. (5.13)
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Proposition 2. The vector field 	g has the following properties:

J ◦	g = &g (5.14)

	g · vµ = −FL∗{g, φν}M(Fvµ,Fvν) (5.15)

	g · (FL∗h) = FL∗{h, g} + FL∗{g, φµ}&h · vµ (5.16)

T(FL) ◦	g = Zg ◦ FL + FL∗{g, φµ}ϒvµ. (5.17)

Proof. The first property is a consequence of the same property of Yg and the fact that Rg is
vertical.

The second property gives the action of	g on the non-projectable functions vµ. To prove
it, we consider equation (5.12),

FL∗{h, φµ} 	g · vµ = FL∗{g, φµ} 	h · vµ;
taking for h the configuration variables h = qi , one obtains

(	g · vµ) γµ = −FL∗{g, φµ}M • Fvµ
withM: TQ → Hom(T∗Q,TQ) given by equation (4.5). Then contraction with Fvν and use
of the property (4.7) finally yields equation (5.15).

Subtracting equations (5.5) and (5.9) yields (5.16).
Finally, using the relation (3.15) we can remove the functionh from the preceding equation

to obtain an equality between vector fields along FL, thus obtaining (5.17). �

Some additional properties. The vector field on TQ&h and the vector field along FLϒf are
defined in terms of the fibre derivative, and a trivial application of Leibniz’s rule shows that

&h1h2 = FL∗(h1)&h2 + FL∗(h2)&h1 (5.18)

ϒf1f2 = f1ϒ
f2 + f2ϒ

f1 . (5.19)

Similarly, one can compute

Yh1h2 = FL∗(h1)Yh2 + FL∗(h2)Yh1 + (K · h1)&h2 + (K · h2)&h1 (5.20)

Rh1h2 = FL∗(h1)Rh2 + FL∗(h2)Rh1 + (K · h1)&h2 + (K · h2)&h1 (5.21)

	h1h2 = FL∗(h1)	h2 + FL∗(h2)	h1 . (5.22)

The last equation, which is obtained immediately by subtracting the two previous ones, shows
that the vector field 	h is also a first-order differential operator on h.

6. Applications to the kinematics

The projectability to a Hamiltonian vector field. In equations (5.15)–(5.17) there is a common
term FL∗{g, φµ} whose vanishing gives an answer to the question of projectability.

Theorem 1. Let L be an almost regular Lagrangian. The necessary and sufficient condition
for the Hamiltonian vector field Zg in T∗Q to be the projection (through the Legendre
transformation) of a vector field in TQ is that g should be a first-class function with respect
to the primary Hamiltonian constraint submanifold Po ⊂ T∗Q.

Then the vector field 	g projects to Zg:

T(FL) ◦	g = Zg ◦ FL. (6.1)

Any other vector field projecting to Zg is obtained by adding to 	g any vector field in the
kernel of the tangent map T(FL).
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Proof. As we have said in section 2, the condition for a vector field in T∗Q to be a projection
is its tangency to Po = FL(TQ). When this vector field is the Hamiltonian vector field Zg
this means that g is a first-class function with respect to the primary constraint submanifold
Po, that is, FL∗{g, φµ} = 0. Then (5.17) shows that 	g projects to Zg .

The last assertion is obvious, since the vector fields that project to zero are those in
Ker T(FL). �

Comparing (5.17) and (5.7) one realizes that the appropriate vector field candidate to
project to Zg is 	g . This is because the condition that ϒK·g = 0, which is equivalent to
F(K ·g) = 0, is more restrictive than g being first class. Indeed, F(K ·g) = 0 means that any
vertical vector field acting onK ·g yields zero, then in particular&µ ·(K ·g) = FL∗{g, φµ} = 0
by (4.20). Of course, when F(K · g) = 0 we can also say that Yg projects to Zg . This is also
a consequence of the fact that if F(K · g) = 0 then Rg is in Ker T(FL).

Equation (6.1) in the theorem is a direct consequence of equation (5.17) in proposition 2
when g is first class. Let us rewrite equations (5.15) and (5.16) accordingly:

Proposition 3. Let g: T∗Q → R be a first-class function with respect to the primary
Hamiltonian constraint submanifold Po ⊂ T∗Q. Then the following results hold:

	g · vµ = 0 (6.2)

	g · FL∗h = FL∗{h, g} for any function h. (6.3)

Recalling (4.7), &ν · vµ = δµν , note that equation (6.2) singles out 	g , among the set of
vector fields projecting to Zg , as the only one whose action on the non-projectable functions
vµ is zero.

Now let us study some commutators among vector fields.

Proposition 4. Let φ, φ′: T∗Q → R be primary Hamiltonian constraints, and g, g′: T∗Q →
R be first-class functions with respect to the primary Hamiltonian constraint submanifold
Po ⊂ T∗Q. Then the following results hold:

[&φ, &φ′ ] = 0 (6.4)

[	g,	g′ ] = −	{g,g′} (6.5)

[	g, &φ] = −&{g,φ} − [Rg − &{g,H }, &φ]. (6.6)

Proof. The first result is well known, we include it for the sake of completeness, and it is
readily proved in coordinates taking into account that &φ · FL∗(h) = 0 for any function h.

For the second result, to show the equality of both vector fields it is enough to prove
that both coincide as differential operators when acting on projectable functions (this is a
consequence of equation (6.3), together with [Zg,Zg′ ] = Z{g′,g}) and on the non-projectable
functions vµ (this is a trivial consequence of equation (6.2)).

One can proceed in the same way to prove the third commutator. To this end, we first
prove that

[	g, &µ] = 0. (6.7)

On projectable functions the Lie bracket of the vector fields is zero; this is due to equation (6.3),
and the fact that &µ applied to any projectable function gives zero. On the non-projectable
functions vµ, equation (6.2) and the fact that &µ · vν is constant also yields zero.



Singular Lagrangians: some geometric structures along the Legendre map 3061

Now let us deal with the general case. First, locally we can express φ = aµφµ for some
functions aµ. Then

&aµφµ = FL∗(aµ)&µ

and [	g, &φ] = [	g,FL∗(aµ)&µ] = 	g ·FL∗(aµ) &µ, thanks to (6.7). Using (6.3) we obtain

[	g, &φ] = FL∗{aµ, g}&µ.
Considering {g, φ} we have &{g,φ} = FL∗(aµ)&{g,φµ} + FL∗{g, aµ}&µ, and so we obtain

[	g, &φ] + &{g,φ} = FL∗(aµ)&{g,φµ}.

Finally, &φ · vµ = FL∗(aµ), so we arrive at

[	g, &φ] + &{g,φ} = (&φ · vµ) &{g,φµ}. (6.8)

To obtain (6.6), note that by definition Rg − &{g,H } = vµ&{g,φµ}, and since by (6.4) the &s of
constraints commute, [Rg − &{g,H }, &φ] = [vµ&{g,φµ}, &φ] = −(&φ · vµ) &{g,φµ}. �

Note, moreover, that using the relation between Yg and 	g we can rewrite equation (6.6)
as

[	g + vµ&{g,φµ}, &φ] = &{φ,g} = [Yg − &{g,H }, &φ]. (6.9)

The kernel of the presymplectic form in TQ. Here we will show that the vector fields 	g
provide an easy explicit construction of the kernel of the presymplectic form ωL = FL∗ωQ
of the Lagrangian formalism.

If a vector field Y in TQ projects through FL to a vector field Z in T∗Q, we have

iY ωL = FL∗ (iZ ωQ).
This shows trivially that Ker T(FL) ⊂ Ker ωL—indeed it is a well known fact that
Ker T(FL) = Ker ωL ∩ V(TQ). So the vector fields &µ are part of a basis for Ker ωL.

Now let us assume that the matrix of Poisson’s brackets {φµ, φν} has constant rank. Then
one can find an appropriate set (φµ) of independent primary Hamiltonian constraints which
are split into first class φµo—their Poisson bracket with any primary Hamiltonian constraint
vanishes on Po—and second class φµ′

o
—see among others [DLGP 84]. As the functions φµo

are first class, the corresponding vector field 	µo = 	φµo projects to the Hamiltonian vector
field Zµo , and since

i	µo ωL = FL∗ (iZµo ωQ) = FL∗(dφµo) = dFL∗(φµo) = 0

we conclude that 	µo is also in Ker ωL.
Note that the vector fields 	µ are linearly independent, since application of the vertical

endomorphism yields independent vector fields, J ◦ 	µ = &µ; moreover, they are also
independent of &µ. Finally, the dimension of Ker ωL and the number of primary Hamiltonian
constraints plus the number of first-class ones coincide (see for instance [MMS 83]). So we
have proved the following result:

Theorem 2. The kernel of ωL has a basis constituted by the vector fields &µ, associated with
the primary Hamiltonian constraints φµ, and the vector fields 	µo , associated with a basis of
the first-class primary Hamiltonian constraints φµo .
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This kernel has been studied in the literature on singular Lagrangians for its interest in
the classification of the constraints [CLR 88, Car 90, MR 92]. An explicit computation of the
kernel was first presented in [PSS 99] (see equations (2.13a) and (2.13b) of that paper), but in a
coordinate, rather than a geometric framework. In that paper the kernel was given in a slightly
different basis, for 	µo in that paper is the present 	µo except for the term vν&{φµo ,φν }, which
is a combination of the vector fields &µ, also in the kernel. The present basis is preferable
because it gives the commutation relations in their simplest form. Indeed, if

{φµo, φνo} = Bρoµoνoφρo + O(φ2)

(the Poisson bracket of first-class constraints is first class), then, taking into account
proposition 4, the algebra reads

[&µ, &ν] = 0

[&µ,	νo ] = 0 (6.10)

[	µo,	νo ] = FL∗(Bρoνoµo )	ρo .

7. Applications to dynamics and symmetries

Lagrangian dynamics. Here we will give an explicit expression of the Lagrangian dynamics
in terms of vector fields. Though in the case of a singular Lagrangian the Euler–Lagrange
equation cannot be written in normal form, one can try to express its solutions in terms of
integral curves of some dynamical vector fields. For instance, consider the Euler–Lagrange
equation in the form (4.12): T(FL) ◦ ξ̇ = K ◦ ξ . Let V ⊂ TQ be a submanifold and XL a
second-order vector field in TQ tangent to V . Then the integral curves of XL contained in V
are solutions of the Euler–Lagrange equation iff XL satisfies

T(FL) ◦XL ≈
V
K (7.1)

(the weak equality means equality on the points of the submanifold V ).
As a first approximation to this problem, let us call V1 the subset of points u ∈ TQ

where the linear equation—for the unknown vector au—Tu(FL) · au = K(u) is consistent,
and assume it to be a submanifold, the primary Lagrangian constraint submanifold. Then the
equation

T(FL) ◦XL ≈
V1

K (7.2)

has solutions, let us call them primary dynamical vector fields [GP 92a]. They are not unique
on V1, since they can be added vector fields in Ker T(FL). On the other hand, one should
find solutions that are tangent to V1, and this is the beginning of an algorithm that, under some
regularity conditions, may give at the end all the solutions of the Euler–Lagrange equation.
This is like the Dirac theory in the Lagrangian formalism (see a careful discussion in [GP 92a];
see also [BGPR 86, MR 92]).

Note that any integral curve of a primary dynamical field XL which is contained in V1 is
a solution of the Euler–Lagrange equation.

Our purpose now is to show that the choice of the Hamiltonian function H and the set of
primary Hamiltonian constraints φµ yields a primary dynamical field XL. Let us define the
vector field

XL
o = 	H + vµ	µ. (7.3)
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Theorem 3. The vector field XL
o satisfies the second-order condition, and is a primary

dynamical field. More precisely,

T(FL) ◦XL
o = K − χµϒvµ ≈

V1

K. (7.4)

Proof. A second-order vector field on TQ can be characterized by the property that
J ◦X = 	TQ. We have

J ◦ (	H + vµ	µ) = &H + vµ&µ = 	TQ

by (5.14) and (4.6), so XL
o satisfies the second-order condition.

Now let us apply T(FL) to XL
o , and use (5.7):

T(FL) ◦XL
o = ZH ◦ FL + vµZµ ◦ FL +

(FL∗{H,φµ} + vν FL∗{φν, φµ}
)
ϒv

µ

.

In this expression we recognize the operatorK (see equation (4.18)) and the primary Lagrangian
constraints χµ = K · φµ, thus obtaining (7.4). �

Before proceeding it will be interesting to note some additional properties of XL
o . (We

will use the notation Yµ = Yφµ and Rµ = Rφµ .)

Proposition 5. The vector field XL
o satisfies the following properties:

XL
o = YH + vµYµ (7.5)

XL
o · FL∗(h) = K · h− χµ &h · vµ (7.6)

XL
o · vν = χµ M(Fvν,Fvµ) ≈

V1

0 (7.7)

XL
o · (K · h) = K · {h,H } + vµK · {h, φµ} + χν

(−Rh · vν + FL∗{h, φµ}M(Fvµ,Fvν)
)
.

(7.8)

Proof. The first statement is an immediate consequence of the definition of XL
o and the fact

that

RH + vνRν = 0 (7.9)

whose proof is RH + vνRν = −vµ&{φµ,H } + vν
(
&{φν,H } + vµ&{φν,φµ}

) = &{φν,φµ}vνvµ = 0, due
to the antisymmetry of {φν, φµ}.

The second one is a direct consequence of equation (7.4): it tells us the action ofXL
o (and

indeed of any primary dynamical field XL) on projectable functions.
The third equation gives the action of XL

o on the non-projectable functions vµ. It is
obtained from (5.15) and the definition of the primary Lagrangian constraints χµ:

XL
o · vν = (	H + vµ	µ) · vν = (FL∗{φµ,H } + vρFL∗{φµ, φρ}

)
M(Fvν,Fvµ)

= K · φµ M(Fvν,Fvµ) = χµ M(Fvν,Fvµ).
The fourth equation is obtained from K · h = FL∗{h,H } +

∑
µ FL∗{h, φµ} vµ, (4.18),

by applying (7.6) and (7.7). �

As a consequence of the theorem we obtain the general form of a primary dynamical field
in Lagrangian formalism:

XL = XL
o + εµ &µ.
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On the other hand, according to (4.13), the primary dynamical fields in the Hamiltonian
formalism are

XH = ZH + λµ Zµ.

Both vector fields exhibit a set of arbitrary functions, εµ on TQ and λµ on T∗Q, and we can
relate the corresponding dynamics.

Proposition 6. Let ξ : I → TQ, η: I → T∗Q be related solutions of the Euler–Lagrange and
Hamilton–Dirac equations corresponding to the dynamical vector fields

XL = XL
o + εµ &µ XH = ZH + λµ Zµ.

Then the ‘arbitrary functions’ εµ, λµ are related by

λµ(η(t)) = vµ(ξ(t)) (7.10)

εµ(ξ(t)) = (K · λµ)(ξ(t)). (7.11)

Proof. We have

η̇ = ZH ◦ η + (λµ ◦ η)Zµ ◦ η.

Since ξ and η are related, application of T(τ ∗
Q) yields

ξ = FH ◦ η + (λµ ◦ η)Fφµ ◦ η = FH ◦ FL ◦ ξ + (λµ ◦ η)Fφµ ◦ FL ◦ ξ

and from (4.3)

ξ = γH ◦ ξ + (vµ ◦ ξ) γµ ◦ ξ ;
comparing both expressions we identify λµ with vµ.

Now we compute

(K · λµ)(ξ(t)) = d

dt
λµ(η(t)) = d

dt
vµ(ξ(t))

= XL · vµ = (XL
o + εν &ν) · vµ

= εµ(ξ(t))

where we have used (7.10) and the properties XL
o · vµ ≈

V1

0, &ν · vµ = δµν . �

Another application of the properties ofXL
o is the relation between the Lagrangian and the

Hamiltonian stabilization algorithms. For instance, putting φ1
µ = {φµ,H } (this is a secondary

Hamiltonian constraint when φµ is first class) from (7.8) we have

XL
o · (K · φρ) = K · φ1

ρ + vµK · {φρ, φµ} + χν
(−Rρ · vν + FL∗{φρ, φµ}M(Fvµ,Fvν)

)
and so for first-class constraints we obtain

XL
o · (K · φµo) ≈

V1

K · φ1
µo

which means that performing the first step of the Hamiltonian stabilization followed by
application ofK is equivalent to applyingK and then performing the first step of the Lagrangian
stabilization.

In a similar way from (7.6) we obtain

XL
o · FL∗φ1

µo
≈
V1

K · φ1
µo
.
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In [BGPR 86] a vector field similar to the dynamical vector field XL
o was introduced

in coordinates, and was used in [Pon 88] to explore the relations between Lagrangian and
Hamiltonian dynamics for singular Lagrangians. However, the simplest way to relate both
dynamics is achieved with the choice of XL

o .
On the other hand, in [Grà 00] an intrinsic way to construct a primary dynamical field

in the Lagrangian formalism out from any second-order vector field was introduced using
the Euler–Lagrange operator EL and the map M given by equation (4.5). This procedure,
when applied to the primary dynamical fields, leaves them invariant ‘on-shell’ (we mean on
the primary Lagrangian constraint submanifold). The vector field XL

o is special among the
primary dynamical fields in the sense that its action on the non-projectable functions vµ is zero
on-shell.

Canonical symmetries and canonical Noether symmetries. Now we shall re-express some
statements about symmetries using the vector field Yh.

Let us consider the time-independent symmetries in phase space that are generated by a
function G on phase space through the Hamiltonian vector field ZG = {−,G}. It turns out
[GP 88] that the necessary and sufficient condition for a functionG to generate in this way an
infinitesimal symmetry of the Hamilton–Dirac equation of motion is that

K ·G ∼=
Vf

c (7.12)

for some constant c (in the time-dependent case this would be a function c(t)). Here ∼= denotes
Dirac’s strong equality, that is, an equality up to quadratic terms in the constraints—now the
whole set of constraints, corresponding to the final Lagrangian constraint submanifold Vf
[BGPR 86, GP 92a].

Then, application of (5.6) yields

YG · (K · h) ≈
Vf
K · {h,G} (7.13)

for every function h, where ≈ means equality over the whole constraint surface.

Note conversely that if a functionG satisfies (7.13) for every function h, then (5.6) implies
that Yh · (K · G) ≈

Vf
0 for each h, and so we obtain (7.12) again. We have thus obtained the

following:

Theorem 4. The necessary and sufficient condition for the Hamiltonian vector field ZG to
generate a symmetry of the Hamilton–Dirac equation of motion is

YG · (K · h) ≈
Vf
K · (ZG · h) (7.14)

for all functions h.

One can also consider the more restrictive case of canonical Noether symmetries, whose
infinitesimal generator G can be characterized in a similar way [BGGP 89] as

K ·G = c. (7.15)

Then the same reasoning as above leads to the following:

Theorem 5. The necessary and sufficient condition for the Hamiltonian vector field ZG to
generate a Noether symmetry in phase space is that

YG · (K · h) = K · (ZG · h) (7.16)

for all functions h.
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Note the remarkable fact that a weak (on-shell) equality or a standard equality is the only
difference between the characterization (7.14) for a symmetry of the Hamilton–Dirac equation
of motion and the characterization (7.16) for a canonical Noether symmetry. Since Noether
symmetries exhibit a property of the action functional, it is clear that their characterization
must be, as we see, on- and off-shell. This characterization (7.16) was first obtained in the
paper [GP 00], which was instrumental in finding the new geometric structures that have been
introduced in the present paper.

Note also that, when c �= 0 in (7.12) or (7.15), the conserved quantity associated with the
symmetry is G− ct rather than G.

8. The case of a regular Lagrangian

In this section we will show what the preceding results become when the Lagrangian is
hyperregular, namely, when FL: TQ → T∗Q is a diffeomorphism—in a local study, we
might suppose only that the Lagrangian is regular, namely, that FL is a local diffeomorphism.

Now the 2-form ωL = FL∗(ωQ) on TQ is symplectic. Let us denote by Xf the
Hamiltonian vector field of a function f with respect to ωL. Recall that the Lagrangian
dynamics is now ruled by the Hamiltonian vector field XL = XEL of the energy function.

Proposition 7. Suppose that the Lagrangian is hyperregular. Then

&h = J ◦XFL∗(h) (8.1)

Rh = J ◦XFL∗{h,H } (8.2)

	h = XFL∗h (8.3)

Yh = XFL∗(h) + J ◦XFL∗{h,H }. (8.4)

Proof. The vertical vector fields in (8.1) correspond to bundle maps TQ → TQ. For the
right-hand side the map is

T(τQ) ◦XFL∗(h) = T(τQ) ◦ T(FL−1) ◦ Zh ◦ FL = T(τ ∗
Q) ◦ Zh ◦ FL

which coincides with the map γh = Fh ◦ FL that corresponds to &h.
Definition (5.8) when there are no constraints yields Rh = &{h,H }. Then equation (8.2)

follows immediately from (8.1). (Note by the way that RH = 0.)
Another consequence of the non-existence of constraints is that, according to (5.17) or

theorem 1,	h projects to the Hamiltonian vector fieldZh, and thus it is the Hamiltonian vector
field of FL∗(h), which is the content of (8.3).

Finally, the last equation is an immediate consequence of the definition	h = Yh−Rh. �
Given a second-order vector field D on TQ, a vector field X is called newtonoid with

respect to D (see, for instance, [MM 86, CLM 89] and references therein) if J ◦ [X,D] = 0.
From any vector field X one can construct a newtonoid vector field—with respect to D—as
X+J◦[D,X]. This construction, which has been used in several papers to study the symmetries
of Lagrangian dynamics, is a kind of generalization of the complete lift of a vector field onQ
to TQ. From equation (8.4) it is then easy to deduce the following result:

Corollary 1. If the Lagrangian is hyperregular then Yh is a newtonoid vector field with respect
to the dynamical vector field XL

o of velocity space, and is the newtonoid vector field defined
from the vector field XFL∗(h) = 	h.

In the singular case, using (7.6) it is readily seen that Yh satisfies the condition of being
newtonoid with respect to XL

o only on the primary Lagrangian constraint submanifold V1.
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9. An example

As a simple example, let us consider the Lagrangian of the conformal particle [Sie 88, GR 93]

L = 1
2 (ẋ

2 − λx2) (9.1)

with configuration variables (x, λ) ∈ Q = Rn × R, and Rn endowed with an indefinite scalar
product. The Legendre transformation is given by

FL(x, λ; ẋ, λ̇) = (x, λ; p̂, π̂) p̂ = ẋ, π̂ = 0 (9.2)

so the primary constraint submanifold Po ⊂ T∗Q has codimension one, and is described by
the primary Hamiltonian constraint

φ = π. (9.3)

As a Hamiltonian we take

H = 1
2 (p

2 + λx2). (9.4)

Stabilization of φ0 = φ yields three additional generations of constraints φi+1 = {φi,H }:
φ1 = − 1

2x
2 φ2 = −px φ3 = λx2 − p2

which are first class. The Lagrangian constraints are χi := K · φi−1:

χ = χ1 = − 1
2x

2 χ2 = −ẋx χ3 = λx2 − ẋ2.

(Indeed, χi = FL∗(φi), since the Hamiltonian constraints are first class.) Note also that
K · φ3 = −2λ̇χ1 − 4λχ2.

The kernel of T(FL) is spanned by &φ = ∂/∂λ̇. From the identity Id = γH + v γφ we
determine the function v = λ̇. We also obtain

K · g = ẋa FL∗
(
∂g

∂xa

)
+ λ̇FL∗

(
∂g

∂λ

)
− λxa FL∗

(
∂g

∂pa

)
− 1

2
x2 FL∗

(
∂g

∂π

)
= FL∗{g,H } + FL∗{g, π} λ̇.

Now we can compute

Yh = FL∗
(
∂h

∂p

)
∂

∂x
+ FL∗

(
∂h

∂π

)
∂

∂λ
+

(
K · ∂h

∂p

)
∂

∂ẋ
+

(
K · ∂h

∂π

)
∂

∂λ̇

and, in particular,

Yφ = ∂

∂λ
YH = ẋ

∂

∂x
− λx ∂

∂ẋ
.

Then, from Rh = &{h,H } + λ̇ &{h,π} we obtain Rφ = &φ1 = 0 and RH = λ̇ &−φ1 = 0, from
which 	φ = Yφ and 	H = YH .

According to our results, the kernel of the presymplectic formωL is spanned by&φ = ∂/∂λ̇

and 	φ = ∂/∂λ. (In this case this is obvious since ωL = dx ∧ dẋ.)
Finally, we obtain the primary dynamical vector fields as XL = XL

o + ε&φ , where

XL
o = YH + λ̇ Yφ = ẋ

∂

∂x
+ λ̇

∂

∂λ
− λx ∂

∂ẋ
.

It is easily checked that

T(FL) ◦XL
o −K = −χ ∂

∂π
≈ 0.
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10. Conclusions

During the previous two decades many papers have studied the close relations between
Lagrangian and Hamiltonian formalisms when the Lagrangian function is singular. One can
expedite the Lagrangian picture by using some results from the Hamiltonian side.

In this paper we have added new objects to the geometric framework of these relations.
First, for any function h on phase space T∗Q we have defined the vector field Yh on velocity
space TQ. When viewed in coordinates, this object reminds one of the definition of newtonoid
vector fields; but instead of using a second-order dynamics on Q, which is not well defined
in general when the Lagrangian is singular, we use the unambiguous time-evolution operator
K that connects Lagrangian and Hamiltonian formalisms. Once a HamiltonianH and a set of
primary Hamiltonian constraints φµ have been chosen, we have also defined the vector fields
Rh and 	h.

These objects give effective answers to several questions. The projectability of a vector
field to a Hamiltonian vector field: we have shown that, when h is a first-class function
on T∗Q, the vector field 	h projects to the Hamiltonian vector field Zh. The kernel of the
presymplectic form of the Lagrangian formalism: it can be computed as the subbundle spanned
by the vector fields &µ associated with the primary Hamiltonian constraints φµ and the vector
fields	µo associated with the first-class primary Hamiltonian constraints. The construction of
the dynamical vector fields in the Lagrangian formalism: the vector fieldXL

o = 	H + vµ	µ is
a solution of the Euler–Lagrange equation on the primary Lagrangian constraint submanifold.
Finally, the characterization of dynamical symmetries: the fact that G is the generator of
an infinitesimal symmetry can be expressed as a kind of commutation relation between the
time-evolution operator K and the couple of vector fields YG, ZG.

In view of these results, we can say that the time-evolution operator K still provides one
with new insights concerning the connections between singular Lagrangian and Hamiltonian
dynamics. The functions vµ, given by (4.3) as a kind of pseudo-inversion of the Legendre
transformation, and the fibre derivation, a seldom used operation in geometric mechanics,
complete, together with the usual structures of tangent and cotangent bundles, the set of tools
used in this paper.

As a final remark, let us point out that some of our expressions are also valid in the
time-dependent case, which is especially interesting for dealing with gauge symmetries.
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[Tul 75] Tulczyjew W M 1975 Sur la différentielle de Lagrange C. R. Acad. Sci., Paris A 280 1295–8
[Tul 76] Tulczyjew W M 1976 Les sous-varietés lagrangiennes et la dynamique Lagrangienne C. R. Acad. Sci.,

Paris A 283 675–8


